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Introduction

• Global Precipitation Measurement (GPM) mission is an international effort for 
collecting worldwide observations of rain and snow.

• It was launched on February 27, 2014 by NASA and the Japanese Aerospace 
Exploration Agency (JAXA)

• GPM Core Observatory Satellite Orbit:
– Circular non-Sun-synchronous orbit 
– 65 degrees inclination
– ~400 km altitude
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• Currently GPM is below the International 
Space Station (ISS).

• On orbit collision risk:
– Cataloged debris objects
– Occasional smallsat/cubesat objects deployed 

from the ISS. 

• Both operational scenarios require an 
accurate knowledge of the expected GPM 
prediction errors as a function of time.

• The challenge is to represent the proper 
(realistic) distribution of the satellite state 
in a future time. Visualization of the GPM Core Observatory and partner satellites.

Credits: NASA



Introduction

• Many times, the state uncertainty reported by the orbit determination (OD) process tends to 
underrepresent the true level of uncertainty in the state solution.

• Furthermore, simplifying Gaussian assumption for the distribution of the predicted satellite states 
may not hold after long propagation durations.

• Other methods when Gaussian assumption isn’t valid

– Gaussian Mixture Models

– Gauss von Mises model

– Polynomial chaos

• Operationally, however, the conventional method based on the joint Gaussian distribution of the 
primary and secondary objects is used for the computation of the collision probability at the time 
of closest approach. 

– Collision probability reported by the Joint Space Operations Center (JSpOC)

• Hence, it is very important to confirm that the predicted covariance generated and delivered to 
JSpOC for screening is both realistic and also does not violate the Gaussian assumption.

• SpaceNav Covariance Realism Tool (CRT), accomplishes this by inflating the propagated covariance 
via a set of tuned process noise parameters.

• Goodness-of-Fit (GOF) test is then performed to test for the Gaussian assumption of the 
predicted error population and the propagated uncertainties.
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An Overview of the GPM Covariance Realism Process
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Statistical Analysis & Overlap Comparison

• The goal of the overlap analysis is to provide a measure of the accuracy of the predictive 
ephemerides and a realistic characterization of the expected propagation errors.

• This method performs a comparison between the definitive and the predictive states over 
several epochs.

• The divergence of predictive ephemerides from the definitive ones is used to empirically 
represent the expected level of error growth in the propagated state.

• Due to inherent errors in the definitive ephemeris, this method really shows the relative error 
growth between the OD solution and the predicted trajectory.
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Statistical Analysis & Overlap Comparison

Outlier Removal
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• Some of the predicted ephemeris 
files contain predicted 
maneuvers.

• Errors in the predicted 
maneuvers vs. what was actually 
executed (definitive ephem) 
result in large predicted state 
errors that need to be removed 
from overlap statistics.

• Maneuver uncertainty may be 
added later at the time of 
realistic covariance generation.

• We consider overlap data from 
January 2016 till March 2018.

• We consider every other 3 
predicted file to make sure that 
the overlapped state differences 
are independent.



Statistical Analysis & Overlap Comparison

Outlier Removal

• A Recursive sigma level 
outlier removal scheme is 
used. The recursion ends 
when no more outlier is 
identified.

• Overlap state differences 
after outlier removal is 
performed.

• Majority of the state 
differences are within ±3𝜎
(Standard Deviation) of the 
data.

• State differences are smooth 
and well-behaved.

• A total of 232 trajectories 
remain after outlier removal 
is completed.
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Statistical Analysis & Overlap Comparison

vs. FOT Prediction

• The overlapped predicted errors vs. the predicted uncertainty for a handful of selected 
ephemeris generated by GPM flight operation team (FOT). 

• The curves generated by different FOT files look as if they fall on top of each other at the 
scale of this plot. 

• The predicted uncertainty generated by the FOT underestimates the observed level of 
dispersion that exists in the predicted errors.

• That is, FOT predicted uncertainty is not a realistic representation of the actual prediction 
error dispersion.
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Statistical Analysis of the Overlapped Data

Test for Gaussian Assumption

• Mahalanobis distance

– 𝑑2 = 𝛿𝑿𝑇 ത𝑃−1𝛿𝑿

where 

𝛿𝑿3×1: Predictive position error

ത𝑃: Covariance given by the data or 
predictive covariance 

• 𝑑2~𝜒2 3 iff 𝛿𝑿~𝑁(0, ത𝑃)

• p-values corresponding to 3-DoF 𝜒2

GOF test for the prediction position 
errors alone.

• The results show one can safely 
assume that the predicted errors (after 
the outlier removal) follow a Gaussian 
distribution.
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Statistical Analysis of the Overlapped Data

Test for Gaussian Assumption
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• Scatter plot of the position error 
population.

• Radial, In-track, and X-track standard 
errors.

• Uncertainty ellipses are computed 
from the data pool.
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propagation

2nd day of the 

propagation

1st day of the 

propagation

Strong correlation between 

radial and in-track 

components.



Statistical Analysis of the Overlapped Data

Test for Gaussian Assumption

• What if the prediction errors are scaled 
by the FOT provided covariance?

• The FOT predicted uncertainty pushes 
the data away from the Gaussian 
distribution.

• FOT provided uncertainty is NOT realistic.
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Process Noise Tuning

Formulation

• Process noise is a way for the dynamical model to compensate for unknown or mismodeled 
accelerations present in that model.

• The process noise is implemented by including stochastic accelerations into the predicted 
covariance propagated forward in time.

• This is done by augmenting the linear mapping of the covariance matrix with and additional 
inflation term:

• The process noise transition matrix, 𝛤, is used to map Q forward in time.

• The process noise matrix, Q, is composed of acceleration terms in the radial, in-track, and 
cross-track directions

• The process noise terms are accelerations, hence in one dimensional case is simplifies to
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Process Noise Tuning

Metrics

• “Tuning” of process noise parameters means that we select a set of 
parameters that minimize a certain cost function.

• In this case, the cost function is the difference between the 
statistically derived prediction error profile and the propagated 
uncertainty.

• There are many ways for defining the cost function (metric) of the 
difference between the two uncertainty profiles.

• Two metrics are considered for this analysis:
– Mean percent difference along the propagated arc – Err_mean

– Final difference percentage (averaged over one orbit period rather than a 
single point) – Err_final

• Following analysis compares these two metrics.

• An iterative least squares targeting method was used to perform 
the tuning.
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Process Noise Tuning

Metrics – GOF tests
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• The process noise tuning was performed for 
all of the predicted trajectories.

• The parameters were tuned against the to 
different metrics for 3-day prediction period.

• New covariance profile was generated based 
on each tuned process noise parameter set.

• The 𝜒2 statistic was computed for each 
prediction time based on the new 
propagated covariance.

• The GOF test p-value plot shows that the 
addition of the process noise generates 
realistic covariance for more that ~50% of 
the propagation times. 

• The location of the best fit is a function of 
the tuning metric; mean vs. final error. 



Process Noise Tuning

Metrics – GOF tests
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• Tuning to the final error at 3 days of prediction.

• Close agreement between the empirical cumulative 
distribution function (ECDF) derived from the data and the 
hypothesized distribution after 3 days of propagation.

• There is also a good visual agreement between the two curves 
after 1 day and 2 days of propagation, even though the p-
value suggests otherwise.

• The large number of the test population results in a very strict 
statistical GOF test which is sensitive to small amounts of 
deviations from the hypothesized distribution.
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Process Noise Tuning

Sensitivity Analysis

• It is also of interest to look at the effect of 
tuning to different prediction time spans, as 
one may need the tuning done for a shorter 
than 3 day time span during an operational 
scenario.

• This plot shows the tuned process noise 
parameters to the final percent difference 
metric, and to 1, 2, and 3 day time spans.

• The results show that the in-track and cross-
track process noise parameters increase as 
the tuning span is increased. 

• Interestingly, the radial portion decreases. 
This may be un-intuitive at first, however, the 
reason for the decreasing radial PN 
parameters is the increasing in-track 
parameters that more than compensate for 
the radial portion via their correlation.
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Maneuver Uncertainty Implementation

Methodology

• GPM spacecraft executes maneuvers frequently during its normal operations.

• Errors in maneuver execution will lead to errors in the propagated state of 
the spacecraft.

• Depending on the size of the maneuver and the error level, maneuver 
execution results in an increased propagated state uncertainty.

• Gates Model for maneuver execution error
– Maneuver Magnitude Error

• Bias in the maneuver magnitude, 𝜖1
• Proportional error, 𝜖2

– Pointing Error
• Bias in pointing, 𝜖3
• Proportional error in pointing, 𝜖4

– 𝛿Δ𝑽 = 𝜖1
2 + Δ𝑽 2𝜖2

2 ො𝒆1 + 𝜖3
2 + Δ𝑽 2𝜖4

2 ො𝒆2 + 𝜖3
2 + Δ𝑽 2𝜖4

2 ො𝒆3

– ො𝒆1, ො𝒆2, ො𝒆3 are the basis vectors of the maneuver coordinate frame such that ො𝒆1 is 
aligned with Δ𝑽 direction. 
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Maneuver Uncertainty Implementation

Analysis of the Past Performance

• Maneuver type breakdown since the s/c launch:

– A total of 22 type 1 maneuvers (fwd facing – prograde) – thrusters 1 – 8

– A total of 27 type 2 maneuvers (bwd facing – prograde) – thrusters 9 – 12

– 2 type 3 maneuvers (bwd facing – retrograde) – thrusters 1 – 8

– One type 4 maneuver (fwd facing – retrograde) – thrusters 9 – 12

• With only a few retrograde maneuvers one can not establish statistically significant 
results, hence

• In analyzing the statistical performance of maneuvers, we consider maneuvers that 
use the same thruster set as the same type, i.e.
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Maneuver Type S/C yaw orientation 

(deg)

Thruster set Resulting 

Maneuver

1 0 – forward facing aft ( thrusters1 – 8 ) Prograde

2 180 – backward facing fwd ( thrusters 9 – 12 ) Prograde

1 180 – backward facing aft ( thrusters1 – 8 ) Retrograde

2 0 – forward facing fwd ( thrusters 9 – 12 ) Retrograde



Maneuver Uncertainty Implementation

Analysis of the Past Performance

• Maneuver execution error history – Percent errors

• There is not a strong visible correlation between the maneuver magnitude and 
relative error scale.

• The same outliers also exist in the absolute error scale.
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Maneuver Uncertainty Implementation

Analysis of the Past Performance

• At last, based on the analysis of the available data on the performance of 
the thrusters thus far, we arrive at the following performance values for 
two types of maneuvers.

• The values are computed after taking out the outliers

• We take the root mean square (RMS) of the residuals as the 1-sigma 
uncertainty level for the maneuvers, per maneuver type.

• Pointing errors are assumed to be negligible. 
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Maneuver Type

# of Data

Points

Mean

(m/s)

Standard Deviation 

(m/s)

RMS

(m/s)

1 - aft ( thrusters1 – 8 ) 23 0.002 0.029 0.028

2 - fwd ( thrusters 9 – 12 ) 26 0.001 0.014 0.013

Relative Errors

1 - aft ( thrusters1 – 8 ) 2.48% 2.43%

2 - fwd ( thrusters 9 – 12 ) 1.07% 1.05%



Maneuver Uncertainty Implementation

Example

• Maneuver execution errors are 
considered in the realistic covariance 
generation tool. 

• Example:
• Magnitude: 0.459 m/s

• Time: 09/15/17 14:31:28

– Maneuver File:
• Predicted Maneuver Report

– Maneuver Type:
• Prograde

• Orbit Maintenance

• Maneuver execution error: 2.43%

• Maneuver pointing error: assumed 
to be zeros

• A relatively small maneuver error has 
a big impact on the uncertainty 
growth rate.
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Maneuver Uncertainty Implementation

Monte Carlo Validation 
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Maneuver Monte Carlo Simulation Settings



Conclusion

• A comprehensive analysis of the predicted uncertainty profile of NASA’s GPM spacecraft is 
discussed. 

• Analysis of the pass two plus years of GPM definitive and predictive ephemeris files revealed that 
the propagated uncertainty generated by the GPM flight operations software tends to 
underestimate the true level of predictive trajectory dispersion, by a significant amount. 

• A goodness-of-fit test was carried out to test for the Gaussian distribution hypothesis of the 
predictive trajectory error population, when those errors are scaled by the GPM provided 
uncertainty, and when they are scaled by the realistic covariance generated by the SpaceNav
covariance realism tool. 

• It was shown that the predictive trajectory errors do follow a Gaussian distribution, while the 
predicted covariance profile provided by the GPM operational software moves the data away from 
a Gaussian distribution. 

• It was further shown that the Gaussian distribution assumption was again valid after the 
propagated uncertainty profile was corrected via the SpaceNav covariance realism method for 
specific tuning criteria.

• We further discussed an analysis of the GPM spacecraft past maneuver performance, and the 
method that is used to incorporate maneuver uncertainty into the propagated realistic covariance. 

• This method was validated via a Monte Carlo simulations. 

• Results from this study show that scaling the predicted covariance via process noise is a simple and 
low cost method to produce uncertainty profiles that represent the realistic level of dispersion in 
the predicted trajectories for SSA applications.
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An Overview of the GPM Covariance Realism Process

Detailed Flowchart
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Chi squared GOF test

• Cramer von Mises (CVM) test statistic

– Sample population y with empirical cumulative probability 
distribution function (ECDF) denoted by 𝐹𝑚 𝑦 and 
hypothesized cumulative distribution function (cdf) 𝐹 𝑦

• Monte Carlo version
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Process Noise Tuning Optimization

Least Squares Solution [1 of 3]

• The process noise tuning process may be optimized by a minimization 
scheme that aims to minimize the considered metric.

• Let 𝜎𝑒𝑝ℎ be the target uncertainty that we wish to achieve

• Therefore, we have 𝜎𝑒𝑝ℎ = 𝑓 𝝈 where 𝝈 is a vector that contains the 

process noise parameters, i.e.

– 𝝈 = [𝜎𝑅 , 𝜎𝐼 , 𝜎𝑐]

– 𝜎𝑅 , 𝜎𝐼 , 𝜎𝑐 are the radial, in-track, and cross-track process noise 
parameters

• The goal of the optimization (tuning) process is to match two 
uncertainty profiles according to a given metric; The one computed 
from the ephemeris data (𝜎𝑒𝑝ℎ), and the other that is generated via 

propagated uncertainty (𝜎𝑝𝑟𝑜𝑝 = 𝑓 𝝈∗ ).
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Least Squares Solution [2 of 3]

• Let 𝑴 is the error metric that we aim to minimize via tuning

• The cost function may be defined by 𝐽 = Τ1 2𝑴
𝑻𝑴

• 𝑴 is a non-linear function of the tuning set 𝝈∗

• We linearize the error function about the reference tuning set 
as the following:

– 𝑴 ≈ ቚ
𝜕𝑓 𝝈

𝜕𝝈 𝝈∗
𝛿𝝈, where 𝛿𝝈 = (𝝈 − 𝝈∗)

– Rewrite 𝑴 ≈ 𝐻𝛿𝝈, s.t. 𝐻 = ቚ
𝜕𝑓 𝝈

𝜕𝝈 𝝈∗

• Cost function 𝐽 is minimized by the least squares solution of 
the cost function above, i.e.

– 𝛿𝝈 = 𝐻T𝐻
−1

𝐻T𝑴
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Least Squares Solution [3 of 3]

• Since we implement a linear solution, one should iterate the 
solution until convergence

• There are, however, certain caveats for this method
• This method relies on the computation of the derivatives of 

the cost function at a given point. As a result it would only be 
applicable to those cases that have a smooth cost function, 
for which derivatives exist.

• Finally, the linear assumption further relies on the fact that 
the initial parameter selection is close to the optimal 
parameter set

• Starting from an initial parameter set that is far from the 
optimal values, may cause the method to get trapped in local 
optimum solutions (if any exists, depending on the cost 
function form)
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Process Noise Optimization Cost Function
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